Saturday, October 4, 2014

GATE 2015 Syllabus: Electronics and Communication Engineering (EC)

Engineering Mathematics 
Linear Algebra: Matrix Algebra, Systems of linear equations, Eigen values and eigen vectors.
Calculus: Mean value theorems, Theorems of integral calculus, Evaluation of definite and improper
integrals, Partial Derivatives, Maxima and minima, Multiple integrals, Fourier series. Vector identities, Directional derivatives, Line, Surface and Volume integrals, Stokes, Gauss and Green's theorems.

Differential equations: First order equation (linear and nonlinear), Higher order linear differential equations with constant coefficients, Method of variation of parameters, Cauchy's and Euler's equations, Initial
and boundary value problems, Partial Differential Equations and variable separable method.
Complex variables: Analytic functions, Cauchy's integral theorem and integral formula, Taylor's and Laurent' series, Residue theorem, solution integrals.
Probability and Statistics: Sampling theorems, Conditional probability, Mean, median, mode and standard deviation, Random variables, Discrete and continuous distributions, Poisson, Normal and Binomial
distribution, Correlation and regression analysis.
Numerical Methods: Solutions of non-linear algebraic equations, single and multi-step methods for differential
equations.
Transform Theory: Fourier transform, Laplace transform, Z-transform.
Electronics and Communication Engineering
Networks: Network graphs: matrices associated with graphs; incidence, fundamental cut set and fundamental circuit matrices. Solution methods: nodal and mesh analysis.
Network theorems: superposition, Thevenin and Norton's maximum power transfer, Wye-Delta transformation. Steady state sinusoidal analysis using phasors. Linear constant coefficient differential equations; time domain analysis of simple RLC circuits, Solution of network equations using Laplace
transform: frequency domain analysis of RLC circuits. 2-port network parameters: driving point and transfer functions. State equations for networks.
Electronic Devices: Energy bands in silicon, intrinsic and extrinsic silicon. Carrier transport in silicon: diffusion
current, drift current, mobility, and resistivity. Generation and recombination of carriers. p-n junction diode, Zener diode, tunnel diode, BJT, JFET, MOS capacitor, MOSFET, LED, p-I-n and avalanche photo diode, Basics of LASERs. Device technology: integrated circuits fabrication process, oxidation, diffusion, ion implantation, photolithography, n-tub, p-tub and twin-tub CMOS process.
Analog Circuits: Small Signal Equivalent circuits of diodes, BJTs, MOSFETs and analog CMOS. Simple diode circuits, clipping, clamping, rectifier. Biasing and bias stability of transistor and FET amplifiers.
Amplifiers: single-and multi-stage, differential and operational, feedback, and power. Frequency response of amplifiers. Simple op-amp circuits. Filters. Sinusoidal oscillators; criterion for oscillation; single-transistor and op-amp configurations. Function generators and wave-shaping circuits, 555 Timers. Power supplies.
Digital circuits: Boolean algebra, minimization of Boolean functions; logic gates; digital IC families (DTL, TTL, ECL, MOS, CMOS). Combinatorial circuits: arithmetic circuits, code converters, multiplexers,
decoders, PROMs and PLAs. Sequential circuits: latches and flip-flops, counters and shiftregisters.
Sample and hold circuits, ADCs, DACs. Semiconductor memories.
Microprocessor(8085): architecture, programming, memory and I/O interfacing.
Signals and Systems: Definitions and properties of Laplace transform, continuous-time and discrete-time Fourier series, continuous-time and discrete-time Fourier Transform, DFT and FFT, z-transform.
Sampling theorem. Linear Time-Invariant (LTI) Systems: definitions and properties; causality, stability, impulse response, convolution, poles and zeros, parallel and cascade structure, frequency response, group delay, phase delay. Signal transmission through LTI systems.
Control Systems: Basic control system components; block diagrammatic description, reduction of block diagrams. Open loop and closed loop (feedback) systems and stability analysis of these systems. Signal
flow graphs and their use in determining transfer functions of systems; transient and steady state analysis of LTI control systems and frequency response. Tools and techniques for LTI control system analysis: root loci, Routh-Hurwitz criterion, Bode and Nyquist plots.
Control system compensators: elements of lead and lag compensation, elements of Proportional-Integral-
Derivative (PID) control. State variable representation and solution of state equation of LTI control systems.
Communications: Random signals and noise: probability, random variables, probability density function,
autocorrelation, power spectral density. Analog communication systems: amplitude and angle modulation and demodulation systems, spectral analysis of these operations, superheterodyne receivers; elements of hardware, realizations of analog communication systems; signal-to-noise ratio (SNR) calculations for amplitude modulation (AM) and frequency modulation (FM) for low noise conditions. Fundamentals of information theory and channel capacity theorem. Digital communication systems: pulse code modulation (PCM), differential pulse code modulation (DPCM), digital modulation schemes: amplitude, phase and frequency shift keying schemes (ASK, PSK, FSK), matched filter receivers, bandwidth consideration and probability of error calculations for these schemes. Basics of TDMA, FDMA and CDMA and GSM.
Electromagnetics: Elements of vector calculus: divergence and curl; Gauss' and Stokes' theorems, Maxwell's
equations: differential and integral forms. Wave equation, Poynting vector.
Plane waves: propagation through various media; reflection and refraction; phase and group velocity; skin
depth. Transmission lines: characteristic impedance; impedance transformation; Smith chart; impedance matching; S parameters, pulse excitation.
Waveguides: modes in rectangular waveguides; boundary conditions; cut-off frequencies; dispersion relations. Basics of propagation in dielectric waveguide and optical fibers. Basics of Antennas: Dipole antennas; radiation pattern; antenna gain.

Related Articles

Graduate Aptitude Test in Engineering (GATE)
GATE 2015: Graduate Aptitude Test in Engineering
GATE 2015 Registration Date Extended
Who are eligible to write GATE Computer Based Test (CBT)?
GATE Examination Pattern, Types of Questions and Marking Scheme
GATE Examination Cities
Negative Marking in GATE 2015
GATE 2015 Syllabus: General Aptitude (GA)
GATE 2015 Syllabus: Life Sciences (XL)
GATE 2015 Syllabus: Agricultural Engineering (AG)
GATE 2015 Syllabus: Architecture and Planning (AR)
GATE 2015 Syllabus: Engineering Sciences (XE)
GATE 2015 Syllabus: Aerospace Engineering (AE)
GATE 2015 Syllabus: Textile Engineering and Fibre Science (TF)
GATE 2015 Syllabus: Production and Industrial Engineering (PI)
GATE 2015 Syllabus: Physics (PH)
GATE 2015 Syllabus: Metallurgical Engineering (MT)
GATE 2015 Syllabus: Mining Engineering (MN)
GATE 2015 Syllabus: Mechanical Engineering (ME)
GATE 2015 Syllabus: Mathematics (MA)
GATE 2015 Syllabus: Instrumentation Engineering (IN)
GATE 2015 Syllabus: Geology and Geophysics (GG)
GATE 2015 Syllabus: Ecology and Evolution (EY)
GATE 2015 Syllabus: Electrical Engineering (EE)
GATE 2015 Syllabus: Electronics and Communication Engineering (EC)
GATE 2015 Syllabus: Chemistry (CY)
GATE 2015 Syllabus: Computer Science and Information Technology (CS)
GATE 2015 Syllabus: Chemical Engineering (CH)
GATE 2015 Syllabus: Civil Engineering (CE)
GATE 2015 Syllabus: Biotechnology (BT)
Notification: Power your career with OPGC through GATE 2015
GATE 2015: Indian Oil Engineers Recruitment 2015
BPCL Engineers Recruitment as Management Trainee
Powergrid Recruitment: Executive Trainees Electrical - 20th Batch

No comments:

Post a Comment

Thanks for visiting this website. Your feedback are important to us. Please note we only approve genuine comments!

Submit your Career Questions below!

Name

Email *

Message *