Tuesday, December 18, 2012

JAM 2013 Syllabus Computer Applications

The Computer Applications (CA) test paper comprisesof Mathematics, Computer Awareness, and Analytical Ability and General Awareness and they will be in the ratio 4:2:1. The question paper will be fully of objective type. There will be negative marking (one third) for wrong answer.

MATHEMATICS
Algebra: Set theory and its simple applications. Basic concepts of groups, fields and vector spaces.
Matrices: Rank of a matrix. Existence and uniqueness of solution of a system of linear equations. Eigenvalues and Eigenvectors. Inverse of a matrix by elementary transformations.
Differential Calculus: Differentiation, Partial differentiation, Taylor series and approximate calculations. Maxima and minima of functions of one and two variables.

Integral Calculus: Single and multiple integration. Definite integrals, Change of order and change of variables. Applications to evaluation of area, surface and volume.
Differential Equations: First order differential equations, linear differential equations of higher order with constant coefficients.
Vector Algebra: Addition, subtraction, dot product, cross product, triple product and their applications.
Numerical Analysis: Solution of non-linear equations using iterative methods. Interpolation (Lagrange's formula and Newton's formula for equidistant points). Numerical differentiation and integration (Trapezoidal and Simpson's rules).
Probability: Basic concepts of probability theory. Binomial and Poisson distributions.
Linear Programming: Formulation and its graphical solution for two variable problems.

COMPUTER AWARENESS
Elements of computers. Number systems. Basic electronic gates. Boolean algebra. Flip-Flops. Algorithmic approach to solve problems. Fundamentals of C language.

ANALYTICAL ABILITY AND GENERAL AWARENESS
Simple questions will be asked to test the analytical ability and general awareness of candidates.

JAM 2013 Syllabus Chemistry

PHYSICAL CHEMISTRY

Basic Mathematical Concepts: Functions, maxima and minima, integrals, ordinary differential equations, vectors and matrices, determinants, elementary statistics and probability theory.
Atomic and Molecular Structure: Fundamental particles, Bohr's theory of hydrogen-like atom; wave-particle duality; Uncertainty principle; Schrodinger's wave equation; Quantum numbers, shapes of orbitals; Hund's rule and Pauli's exclusion principle, electronic configuration of simple homonuclear diatomic molecules.
Theory of Gases: Equation of state of ideal and nonideal (van der Waals) gases, Kinetic theory of gases.
Maxwell-Boltzmann distribution law; equipartition of energy. Solid state: Crystals, crystal systems, X-rays, NaCl and Kcl structures, close packing, atomic and ionic radii, radius ratio rules, lattice energy, Born-Haber cycle, isomorphism, heat capacity of solids.
Chemical Thermodynamics: Reversible and irreversible processes; First law and its application to ideal and nonideal gases; Thermochemistry; Second law; Entropy and free energy, Criteria for spontaneity.
Chemical and Phase Equilibria: Law of mass action; Kp, Kc, Kx and Kn; Effect of temperature on K; Ionic equilibria in solutions; pH and buffer solutions; Hydrolysis; Solubility product; Phase equilibria-Phase rule and its application to one-component and two-component systems; Colligative properties.
Electrochemistry: Conductance and its applications; Transport number; Galvanic cells; EMF and Free energy; Concentration cells with and without transport; Polarography; Concentration cells with and without transport; Debey-Huckel-Onsagar theory of strong electrolytes.
Chemical Kinetics: Reactions of various order, Arrhenius equation, Collision theory; Theory of absolute reaction rate; Chain reactions - Normal and branched chain reactions; Enzyme kinetics; photochemical processes; Catalysis.
Adsorption: Gibbs adsorption equation, adsorption isotherm, types of adsorption, surface area of adsorbents, surface films on liquids.

ORGANIC CHEMISTRY

Basic Concepts in Organic Chemistry and Stereochemistry: Electronic effect (resonance, inductive, hyperconjugation) and steric effects and its applications (acid/base property). Optical isomerism in compounds without any stereocenters (allenes, biphenyls), conformation of acyclic systems (substituted ethane/n-propane/n-butane) and cyclic systems (mono and di substituted cyclohexanes).
Organic Reaction Mechanism and Synthetic Applications: Chemistry reactive intermediates, carbine, nitrene, benzyne, Hofmann-Curtius-Lossen rearrangement, Wolf rearrangement, Simmons-Smith reaction, Reimer- Tiemann reaction, Michael reaction, Darzens reaction, Witting reaction, McMurry reaction. Pinacol-pinacolone, Favorskii, benzilic acid rearrangement, dienonc-phenol rearrangement, Bayer-Villeger reaction). Oxidation and reduction reactions in organic chemistry. Organometallic reagents in organic synthesis (Grignard and organocopper). Diels-Alder reaction, Sigmatropic reactions.
Qualitative Organic Analysis: Functional group interconversions, structural problems using chemical reactions, identification of functional groups by chemical tests, elementary 1H NMR and IR spectroscopy as a tool for structural elucidation.
Natural Products Chemistry : Introductory chemistry of alkaloids, terpenes, carbohydrates, amino acids, peptides and nucleic acids.
Heterocyclic Chemistry: Monocyclic compounds with one hetero atom.

INORGANIC CHEMISTRY

Periodic Table: Periodic classification of elements and periodicity in properties; general methods of isolation and purification of elements.
Chemical Bonding and Shapes of Compounds: Types of bonding; VSEPR theory and shapes of molecules; hybridization; dipole moment; ionic solids; structure of NaCl, CsCl, diamond and graphite; lattice energy.
Main Group Elements (s and p blocks): Chemistry with emphasis on group relationship and gradation in properties; structure of electron deficient compounds of main groupelements and application of main group elements.
Transition Metals (d block): Characteristics of 3d elements; oxide, hydroxide and salts of first row metals; coordination complexes; VB and Crystal Field theoretical approaches for structure, colour and magnetic properties of metal complexes. Organometallic compounds, metal carnonyls, nitrosyls and metallocenes, ligands with back bonding capabilities; MO theory approaches to explain bonding in metal-carbonyl, metal-nitrosyl and metalphosphine complexes.
Bioinorganic Chemistry: Essentials and trace elements of life, basic reactions in the biological systems and the role of metal ions especially Fe2+, Fe3+, Cu2+ and Zn2+, function of hemoglobin and myoglobin.
Instrumental Methods of Analysis: Basic principles, instrumentations and simple applications of conductometry, potentiometry, UV-vis spectro-photometry, analysis of water, air and soil samples.
Analytical Chemistry: Principles of qualitative and quantitative analysis; acid-base, oxidation-reduction and EDTA and precipitation reactions; use of indicators; use of organic reagents in inorganic analysis; radioactivity; nuclear reactions; applications of isotopes.

JAM 2013 Syllabus Biotechnology

The Biotechnology (BT) test paper comprises ofBiology (44% weightage), Chemistry (20% weightage), Mathematics (18% weightage) and Physics (18% weightage). The question paper will be fully of objective type. There will be negative marking (one third) for wrong answer
.

BIOLOGY (10+2+3 level)
General Biology: Taxonomy; Heredity; Genetic variation; Conservation; Principles of ecology; Evolution; Techniques in modern biology. Biochemistry and Physiology: Carbohydrates; Proteins; Lipids; Nucleic acids; Enzymes; Vitamins; Hormones; Metabolism-Glycolysis, TCA cycle, Oxidative Phosphoryation; Photosynthesis. Nitrogen Fixation, Fertilization and Osmoregulation; Vertebrates - Nervous system; Endocrine system; Vascular system; Immune system; Digestive system and Reproductive System. Basic Biotechnology: Tissue culture; Application of enzymes; Antigen-antibody interaction; Antibody production; Diagnostic aids. Molecular Biology: DNA; RNA; Replication; Transcription; Translation; Proteins; Lipids and Membranes; Operon model; Gene transfer. Cell Biology: Cell cycle; Cytoskeletal elements; Mitochondria; Endoplasmic reticulum; Chloroplast; Golgi apparatus; Signaling. Microbiology: Isolation; Cultivation; Structural features of virus; Bacteria; Fungi; Protozoa; Pathogenic micro-organisms.

CHEMISTRY (10+2+3 level)
Atomic Structure: Bohr's theory and Schrodinger wave equation; Periodicity in properties; Chemical bonding; Properties of s, p, d and f block elements; Complex formation; Coordination compounds; Chemical equilibria; Chemical thermodynamics (first and second law); Chemical kinetics (zero, first, second and third order reactions); Photochemistry; Electrochemistry; Acid-base concepts; Stereochemistry of carbon compounds; Inductive, electromeric, conjugative effects and resonance; Chemistry of Functional Groups: Hydrocarbons, alkyl halides, alcohols, aldehydes, ketones, carboxylic acids, amines and their derivatives; Aromatic hydrocarbons, halides, nitro and amino compounds, phenols, diazonium salts, carboxylic and sulphonic acids; Mechanism of organic reactions; Soaps and detergents; Synthetic polymers; Biomolecules-amino acids, proteins, nucleic acids, lipids and carbohydrates (polysaccharides); Instrumental techniques-chromatography (TLC, HPLC), electrophoresis, UV-Vis, IR and NMR spectroscopy, mass spectrometry.

MATHEMATICS (10+2 level)
Sets, Relations and Functions, Mathematical Induction, Logarithms, Complex numbers, Linear and Quadratic equations, Sequences and Series, Trigonometry, Cartesian System of Rectangular Coordinates, Straight lines and Family, Circles, Conic Sections, Permutations and Combinations, Binomial Theorem, Exponential and Logarithmic Series, Mathematical Logic, Statistics, Three Dimensional Geometry, Vectors, Matrices and Determinants, Boolean Algebra, Probability, Functions, limits and Continuity, Differentiation, Application of Derivatives, Definite and Indefinite Integrals, Differential Equations.

PHYSICS (10+2 level)
Physical World and Measurement, Elementary Statics and Dynamics, Kinematics, Laws of Motion, Work, Energy and Power, Electrostatics, Current electricity, Magnetic Effects of Current and Magnetism, Electromagnetic Induction and Alternating Current, Electromagnetic waves, Optics, Dual Nature of Matter and Radiations, Atomic Nucleus, Solids and Semiconductor Devices, Principles of Communication, Motion of System of Particles and Rigid Body, Gravitation, Mechanics of Solids and Fluids, Heat and Th

Submit your Career Questions below!

Name

Email *

Message *