1. Delocalised Covalent Bonding: Aromaticity, anti-aromaticity; annulenes, azulenes, tropolones, fulvenes, sydnones.
2. (i) Reaction Mechanisms: General methods (both kinetic and non-kinetic) of study of mechanism of organic reactions: isotopic method, cross-over experiment, intermediate trapping, stereochemistry;
energy of activation; thermodynamic control and kinetic control of reactions.
(ii) Reactive Intermediates: Generation, geometry, stability and reactions of carbonium ions and carbanions, free radicals, carbenes, benzynes and nitrenes.
(iii) Substitution Reactions: SN1, SN2 and SNi mechanisms; neighbouring group participation; electrophilic and nucleophilic reactions of aromatic compounds including heterocyclic compounds–pyrrole, furan, thiophene and indole.
(iv) Elimination Reactions: E1, E2 and E1cb mechanisms; orientation in E2 reactions–Saytzeff and Hoffmann;
pyrolytic syn elimination – Chugaev and Cope eliminations.
(v) Addition Reactions: Electrophilic addition to C=C and C=C; nucleophilic addition to C=0, C=N, conjugated olefins and carbonyls.
(vi) Reactions and Rearrangements: (a) Pinacol-pinacolone, Hoffmann, Beckmann, Baeyer–Villiger, Favorskii, Fries, Claisen, Cope, Stevens and Wagner-Meerwein rearrangements.
(b) Aldol condensation, Claisen condensation, Dieckmann, Perkin, Knoevenagel, Witting, Clemmensen, Wolff-Kishner, Cannizzaro and von Richter reactions; Stobbe, benzoin and acyloin condensations;
Fischer indole synthesis, Skraup synthesis, Bischler-Napieralski, Sandmeyer, Reimer-Tiemann and
Reformatsky reactions.
2. (i) Reaction Mechanisms: General methods (both kinetic and non-kinetic) of study of mechanism of organic reactions: isotopic method, cross-over experiment, intermediate trapping, stereochemistry;
energy of activation; thermodynamic control and kinetic control of reactions.
(ii) Reactive Intermediates: Generation, geometry, stability and reactions of carbonium ions and carbanions, free radicals, carbenes, benzynes and nitrenes.
(iii) Substitution Reactions: SN1, SN2 and SNi mechanisms; neighbouring group participation; electrophilic and nucleophilic reactions of aromatic compounds including heterocyclic compounds–pyrrole, furan, thiophene and indole.
(iv) Elimination Reactions: E1, E2 and E1cb mechanisms; orientation in E2 reactions–Saytzeff and Hoffmann;
pyrolytic syn elimination – Chugaev and Cope eliminations.
(v) Addition Reactions: Electrophilic addition to C=C and C=C; nucleophilic addition to C=0, C=N, conjugated olefins and carbonyls.
(vi) Reactions and Rearrangements: (a) Pinacol-pinacolone, Hoffmann, Beckmann, Baeyer–Villiger, Favorskii, Fries, Claisen, Cope, Stevens and Wagner-Meerwein rearrangements.
(b) Aldol condensation, Claisen condensation, Dieckmann, Perkin, Knoevenagel, Witting, Clemmensen, Wolff-Kishner, Cannizzaro and von Richter reactions; Stobbe, benzoin and acyloin condensations;
Fischer indole synthesis, Skraup synthesis, Bischler-Napieralski, Sandmeyer, Reimer-Tiemann and
Reformatsky reactions.